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THERMAL EXPANSION OF ELASTIC-PLASTIC
COMPOSITE MATERIALS
by
George J. Dvorak
Department of Civil Engineering

Rensselaer Polytechnic Institute
Troy, NY 12180

Abstract

7 Exact relationships are derived between instantaneous overall
thermal stress or strain vectors and instantaneous overall mechanical
stiffness or compliance, for two binary composite systems in which one
of the phases may deform plastically. Also, the local instantaneous
thermal strain and stress concentration factors are related in an exact
way to the corresponding mechanical concentration factors.. The results
depend on instantaneous thermoelastic constants and volume fractions of
the phases. They are found for fibrous composites with two distinct
elastically isotropic or transversely isotropic phases, and for any
binary composite with elastically isotropic phases. The results indicate
that in the plastic range the thermal and mechanical loading effects are
coupled even if the phase properties do not depend on changes in temper-
ature. The derivation is based on a novel decomposition procedure which
indicates that spatially uniform elastic strain fields can be created in
certain heterogeneous media by superposition of uniform phase eigen-
strains with local strains caused by piecewise uniform stress fields
which are in equilibrium with prescribed surface tractions. The method
‘s extended t. liscretized microstructures, and also to analysis of

moisture absorption and phase transformation effects on overall response

-and on local fields in the two composite materials. <«’
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1.  INTRCOUCTION

The response of elastic composite materials to spatially uniform
changes in temperature is well understood. An essential contribution to
the solution of this problem was made by LEVIN (1967), who found that
macroscopic thermal expansion coefficients of a composite medium,
consisting of two distinct isotropic phases of arbitrary shape, depend
in a unique way on overall elastic moduli of the aggregate and on
thermoelastic constants of the phases. Thus, if the elastic moduli are
known, the thermal expansion coefficients can be calculated. This line
of inquiry was extended by SHAPERY (1968), who derived bounds on thermal
expansion coefficients of multi-phase composites with isotropic phases,
while ROSEN and HASHIN (1970) applied LEVIN'S approach to binary
composites consisting of anisotropic phases, and they also found bounds
on overall thermal expansion coefficients of multiphase materials.
BUDIANSKY (1970) gave self-consistent estimates of several thermal and
thermoelastic properties of multiphase isotropic mixtures. Among the
more recent contributions to the subject are the papers by LAWS (1973)
and CRAFT CHRISTENSEN (1980).

The response of elastic-plastic composite materials to uniform
thermal changes has been explored only to a limited extent, This is a
more difficult problem because at least one of the phases is inelastic,
and the deformation of the phases and of the composite is affected both
by the overall thermal change and by the current macroscopic mechanical
loading. In the plastic state the thermal and mechanical loading
effects are coupled, even if the mechanical properties of the phases do

not depend on temperature., The problem is, of course, nonlinear and
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2
must be solved in an incremental way. Therefore, the connection between
the two effects must be examined within a combined load increment, A
representative volume element of the composite is first subjected to a
certain uniform initial macroscopic stress or strain and to a uniform
thermal change; then, both the stress or strain and the temperature
experience a small simultaneous change to another uniform state, Over-
all instantaneous stiffness and compliance, and thermal stress and
strain vectors are sought.

Earlier solutions of problems of this kind have been limited to
simpie loading situations in fibrous composites, such as pure thermal
change (OE SILVA and CHADWICK 1969) or thermal change combined with
axisymmetric mechanical loads (DVORAK and RAQ 1976). More recently
(DVORAK 1983) it was shown that the total overall strain increment
caused in a prestressed fibrous composite by a small uniform thermal
change can be related in an exact way to thermoelastic constants of the
phases and to instantaneous overall compliance. No restrictions need to
be imposed on the type of prestress or on the matrix constitutive law
except for plastic incompressibility, but the fiber must be isotropic or
transversely isotropic and remain elastic. This result has been applied
in analysis of a composite cylinder element (DVORAK and WUNG 1984)
subjected to axisymmetric mechanical loading, uniform thermal changes,
and variations in matrix yield stress.

The present paper develops the connections between overall instan-
taneous mechanical and thermal properties in a more general way. First,
it is shown that the overall thermal stress and strain vectors for an
elastic fibrous composite with transversely isotropic phases can be

obtained through superposition of certain uniform fields in the phases,
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and local fields caused by a uniform overall stress or strain. A
. similar result is derived for any composite consisting of two isotropic
phases. These results are then utilized to find instantaneous thermo-
plastic properties and local fields of these composite systems for
simultaneous mechanical and thermal load increments. Extensions of the
results to discretized microstructures, and to additional load effects,

such as phase transformations and moisture absorption are discussed as

well,
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2. ELASTIC FIBROUS COMPOSITE

A binary composite material consists of a matrix reinforced by
aligned and bonded cylindrical fibers. Both phases are assumed to be

homogeneous and transversely isotropic about the fiber direction x3. In

. o AN 2, ‘s "y Te T2
S AR - P

the transverse xixp-plane, the cross sections and distribution of the
phases can be arbitrary providing that the composite is statistically
II homogeneous, transversely isotropic, and free of voids.
A representative volume element V of the composite is selected and
subjected to a certain loading or deformation history which is imposed

through application of uniform overall stresses o0 or strains €O to the

T e e
: '-l—' .

= surface S of volume V. Also, a certain uniform thermal change has been
applied such that the current temperature in V is constant and equal to

8. At this particular point of the loading sequence simultaneous

increments of do and de, or de and do, are applied to V.

i e 4
v

The response of the composite to these load increments is described

by constitutive equations:
dc = Mdo + md® , do = Lde - 2d9, (1)

~ ~

where M,L are (6x6) overall stiffness and compliance matrices, and m,4
are (6x1) overall thermal strain and stress vectors®™,

While M and L are known, we wish to determine the vectors m and L.
To this end it is necessary to specify the constitutive equations for

field averages of the phases:

*We use the customary notation (HILL 1963, LAWS 1973) where, except as
noted, (6x6) matrices are denoted by lightface uppercase Latin letters,
and (6x1) vectors by boldface lowercase Latin or Greek letters. Top
bars denote overall volume averages.

-------------------
.....................




dfr = Mp dgr + mp ds, dgr = Lp dﬁr - %rde (r=f,m) (2)

which are analogous to (1); f,m indicate the "fiber" and "matrix"
phases. In elastic composites, these phases are interchangeable and f,m
i are used merely for convenience of notation,
Since both the composite and each of the phases are transversely
isotropic about x3, it is possible to write a subset of (1) and (2)
I which relates the first two stress and strain invariants. With top bars
and subscripts r,f,m omitted in (1) and (2) one obtains (DVORAK and
BAHEI-EL-DIN 1979):

.! 'dtl n -2 ] doy a
- .&T + de (3) :
de -2 k do 8 e
- |2 ) 2
( \
do K 2 de ka + 28
1 1
{ " ) - do (4)
I do . n||de ta + ng
L 2 2 )

where k,2,n are Hill's (1964) elastic moduli, €E = n - 22/k, a = 2aT,
) B = aL, and a7 and a are linear coefficients of thermal expansion in

the transverse plane and longitudinal direction, respectively. The

strain and stress invariants are defined as:

de = de + de de = de (5)
1 11 22 2 33

ddl = % (ddll + ddzz) ddz = d033 (6)

With appropriate values of elastic moduli and coefficients a,8,

equations (3) to (6) can be applied either to the composite medium or to




each of the two phases,
As long as M,L do not depend on d8, m on do, and 2 on de, the

thermal and mechanical contributions to de and do in (1) can be found

separately and superimposed. By assumption M and L are known, hence the

first terms on right-hand side in (1) are evaluated without difficulty -
for any given do or de. To find m and.2, and the second terms in (1),
we utilize the decomposition procedure of DVORAK (1983). f;;;'

In the first step of the procedure the fiber and matrix phases are
separated and surface tractions which preserve the current local
stresses g: and strains 53 are applied to each phase r = f,m, Alterna-
tively, surface displacements corresponding to f: may be prescribed to
preserve gg. In addition, a uniform thermal change d®@ is applied to
both phases. The local strains caused by d8 would make the phases in-
compatible if the composite was to be reassembled. Therefore, uniform

- -

tractions da;, do; of as yet unknown magnitude are applied to th~ phases

simultaneously with d®@, (The top hats indicate auxilliary uniform

fields used in the decomposition and reassembly of the composite.) This :i%}:i

lTeads to the following uniform strain increments in the separated

phases:
n‘b}"_\.
de = (0 do -1 de)/kE do N
e. = (n - +
IR B T A A R A X
i
- i - il
I
de_ = (-4 do -k do )/k E +B do
) Ez ( f 01 f 02)/ f f f ._::._,‘-.;.
(7) R
“m “m “m $f.;
de = (n do_ -2 do )/Kk E +a do s
1 m 1 m 2 mm m

a a

de” = (-t do" -k do")/KE +8 do
E = (= -
2 m 1 n 2
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7
In the second step of the procedure, the tractions do; and dég must

be adjusted to assure compatibility of the phases and equilibrium of
these tractions at phase interfaces and on the surface S of the represen-

tative volume V., Compatibility and equilibrium require that

“m f “m - f

de = de , k= & (8)
1 1 2 2

~f “m

do, = dol = dSt (9)
do +c do = ds (10)

C C =

£ 02 “m P2 DA

where dSt and dSp are surface tractions which need to be added at S to
preserve overall equilibrium of V while d;I and d;; are applied to the
phases. The magnitudes of phase volume fractions cf + cm = 1 need also
be known at this point.

A1l strain and stress increments in (7) are uniform, hence equa-
tions (8) to (10) are exact for any transverse plane geometry. These
relations suggest that spatially uniform strain fields can be created in
certain heterogeneous media by superposition of uniform eigenstrains
apdd, 8pd6 in the phases, with lTocal strains caused by piecewise uniform
stress fields which are in equilibrium with surface tractions dSp, dSt.

Internal equilibrium and compatibility of the phases in V depend
only on the eight unknown strains and stresses d;I, d;;, d;I, d;;, and
not on dSp, dSt. Therefore, (7), (8) and (9;) represent a system of

seven equations for the eight unknwons. To find a solution, it is

necessary to introduce an additional constraint.
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A particular choice which will be useful in the sequel is:

~ -

do. = p do. , (11)
° %%

where o # 0 is a constant,
Now, dST and dSp follow from (7), after a substitution of (9) and

(10), and from (8):

(12)

"
o

al dST + a2 dSA + a3 de

(13)

[}
o

b, dS_ + b

1 95 2 dSA + b, ds

3
where:

Cm 2f lm

CEKFES * KmEm J

nf m [

R T Sl = e

2% -G NEF 3 =af -ap

lf 1m

by = - +p [ Cm + 1 J
1 ° XFEf ™ Knkm crtf T

bz-’--mf ’ by = - 8¢ + 8

and:

dSt = sTd® , dSp = sp d8 (14)

sT = (azb3 - azbp)/(ajbz - azby) (15)

sp = (a3by - a1b3)/(aib2 - azby) (16)

At this point we change from the invariants (5), (6) to the (6xl)

stress and strain vectors and write

o
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. ~f 1 f S
"_ dEll = dEzz = 2‘ dEl = gl de ’ dE33 s dﬁz gz ds (17)
; de™ =g =Lgi™=n de de™. = den = h, do (18)
- €11 " %22 "7 1 33 2 2
! From (7), with (8) to (10), (15), and (16):
1 1
91 = [5 (nf - v 2£)/ (ke Ef)] sT + 5 of
| 92 = [(-t¢ + v ke)/ (ke Ef)] s7 + 8¢ :
. (19) L
. .7l 1 .
R hy = [f (nm = o tm)/(km Em)| sT + 7 om RS
:f hy = [(-2m + 0 Xp)/(km Eq)| ST + Bn : A.
(] -
where S
Y = sy -0 ¢y sp)/lce sp) s (20) ';:-_ o
. ' ]
. and, according to (8): “4
R
b gy =h » g=hy . (21) ;':g:;l;:-g
; Analogous results for stresses are:
‘ ~f ~f ~f
do. =do_=do = ST d8
11 22 1 {
t (22) SN
v f -f -
= do__ =do_ =7y sy do RN
: 332 .
am em em ]
. do. = do__ =do_ = sy d8 S
11 22 1
. (23)
E‘f-i ~m ~m
do dc:2 = p ST d8

33
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In the final step of the decomposition procedure, the composite is
reassembled and the surface tractions dSt, dSp removed. Of course, the
local strains and stresses (17) to (23) already assure that the phases
are compatible and in internal equilibrium, in fact they are equal to
local fields caused in the composite by simultaneous application of ds,
dSA and dST. They must be now added to local fields caused in the

composite by surface tractions -dSt, -dSa.
The final results assume a concise form with the definitions
h=[hynyhp0oolf
Sa = [sTsTspa00 07

(24)
(11yo000]T

¢ <
]

c=[11p000]7

where [ ]T denotes a transpose and the coefficients appear in (11),
(15), (16), and (19) to (21).

Therefore, for do = 0, d8 *# 0 in (1;):

de =m do (25)

- ~

ms=h - MSa (26)

where m is the overall thermal strain vector and M is the known overall
compliance,
Also, suppose that the local stresses in the phases are written in

terms of concentration factors:

do. = Brdo + brd8 , (r = f,m) {27)

———T T WY T T N R TR e T T
. . PRl B oA ]




and that B, B¢ are known.

With regard to (22) and (23) one obtains:

bf = sT Y - Bf Sa
(28)

STD-BmSa

Similar results can be found for a fully constrained composite
subjected to a uniform thermal change. Recall that the strains (17) and
(18) are actually equal to overall strains under do, dSp, dSt. This
follows immediately from (8) and (21). These overall strains must be
removed, and the local fields adjusted accordingly.

Therefore, for de = 0, do # 0 in (1j):

do = - 2 d9

(29)

2=-Sa+Lh

~ -~

where 2 is the overall thermal stress vector, and L is the known overall
stiffness.
Also, if the local strains are written in terms of concentration

factors:

df:r s Ar dE- - ap de » (r = f,m) (30)

and if Ay, Af are known, one obtains with the help of (17) to (21):
ar = (Af - I) h , am = (Ap - I) h (31)

To facilitate applications we note that
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12
m = [aT aT ag 00 OJT (32)

where at, a are linear coefficients of thermal expansion in the trans-
verse plane, and in longitudinal direction,

For any binary fibrous composite with known phase preperties and
phase volume fractions, the effect of thermal change is reduced to
equivalent mechanical loads and to certain uniform fields in the phases.
Thus mand ¢ are found in terms of M and L, and ar, by in terms of Ar,
Br. All these relations are exact. While the constant o is a free
parameter, none of the results actually depend on p. For each p one
osiains by superposition a solution to the same boundary value problem.
According to the uniqueness theorem in the theory of elasticity, all
such solutions must coincide. This can be verified by numerical

calculations,
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3. TWO ISOTROPIC ELASTIC PHASES

Suppose that a composite aggregate consists of two perfectly bonded
elastic phases, which are distinct but isotropic. The microstructural
geometry can be arbitrary, providing that the composite is statistically
homogeneous and free of voids. The composite itself need not be
isotropic, it can be reinforced by aligned, braided, or otherwise
distributed continuous fibers, short fibers, particles of any shape,
and by combinations of such reinforcements.

Assume that the overall constitutive relations are again given by
(1) and that the overall compliance M and stiffness L are known. Also,
let local fields be described by (2%) and (30), and assume that A., B,
are known, As in the previous section we utilize the subscripts f,m to
identify the two phases, even though we no longer require that either
phase be of cylindrical shape. Local phase properties need be known
only in terms of bulk moduli K¢, Ky, and linear thermal expansion co-
efficients af, ap.

We again pose the problem described in the previous section: The
composite has been loaded by a certain uniform overall stress ED, or
strain §D, and uniform temperature 8o. Simultaneous increments d? and
dé, or j? and do are applied. The response of the aggregate is sought
in terms of the overall thermal strain and stress vectors T and 5, and
phase concentration factors a., bp, (r = f,m).

As in Section 2, the phases are first separated, and loaded by ds

Y

and by certain unknown tractions dopr. The nonvanishing stress and

strain increments are

‘1'. S _..'_.‘
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: * f - f - f
] do  =do_ =do__ = dS¢
11 22 33
- - -f
dc:m=dum = do__ = dS,
11 22 33
(33)
e el cal - (3K¢) do B
€ = = de = +
11" %gp T Fgg T BN ror QA0
e
“m o m “m SRt
de =de =de = dS,/(3 + de
11" Fap T Fgy T En/Ka) +on Lo
To assure equilibrium and compatibility: f"‘k i
f m
dS¢ = dSp = dS, dejj = deij, (34)
and
dS =sd8 , s =-3ef-an)/(1/Kf - 1/Kp) (35) "
The composite is now loaded by three equal overall normal stresses ‘“-1'1'-'-;
dS, and by d8. Local strain and stress fields follow from (33) and R
(34).
Finally, the composite is reassembled and surface tractions dS are ';
removed. hN
Let s
q = $/(3Kg) + af = s/(3Kp) + an %
q=ql111000]7 (36) o
:.,‘f:
'.‘_f\
s=s[111000] l:_:-‘«
Y.
In analogy with (25) to (30); one obtains 3‘:“
l\lq
Al
33
e
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RIA,
15 S
;
For dg = 0, ds # 0, in (1) e
~ 4= = mds (37) S
& s A
m=q - Ms :
ddr = br ds (r = f,m) :"‘._ -
be=(1-8f)s , bp=(l-Bys (38) b
S
b,
< For dc = 0, do # 0 in (1): N
N 47 = -2 do e
N * (39) b
g = -5 +1Lq T
dEr = ap ds (r = f,ITI)
: ag = (Af-1)q , ap=(Ap-1)gq (40)
1f the composite is macroscopically anisotropic, then M and L can
depend on up to 21 elastic constants and
m = {a] a2 a3 ag a5 aglT (41) ._-
B I
- where a] to ag are overall linear thermal expansion coefficients, de- e
.« ' v-‘. 7o

>

fined by (1)) at do = 0. For a fibrous composite which is transversely

e’

v,
»

.

»

v
g y
‘e
¥, 1,

. isotropic one recovers (32). For an isotropic composite all a in (32)

r
.
o

become equal to

i, 8%
v "v :

"\:‘i 'v\l .
s
A
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) (af -am) 1 1 (42)
a-am*T——r‘(f‘m
LK? - g;?

where K is the overall bulk modulus.

This last equation was derived in a different way by LEVIN (1967).
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4, ELASTIC-PLASTIC COMPOSITES

(i) Fibrous composites

Consider again the fibrous composite system of Section 2. Suppose

Ao

that the matrix phase is elastic within a certain stress region, but
becomes elastic-plastic when a given yield condition has been satisfied.
The fiber remains elastic until failure. This suggests a metal matrix,
which is usually elastically isotropic. Thus the matrix elastic moduli

in (3) and (4) become related as follows:

2
Zm = Ky - My, Mm = kp + My, En = "m - Zm/Kp

(43)

Nm_ _ 2(1-vm) in .Eﬂm

Kfm ~  En ' Kefp T Ep am = %m

where En, vy are the isotropic constants, and g8y is the Tinear thermal
=, expansion coefficient of the matrix.

In the plastic range the matrix response is assumed to be the
piecewise 1inear and given by (2), but My and Ly, M and im are now
instantaneous compliance and stiffness matrices, and thermal vectors, at
a particular point of a l1oading path. We assume that My and Ly are
symmetric, satisfy the requirement of plastic incompressibility of the

E: matrix, and do not depend on d9; my and 2y do not depend on d8, but may

3 be functions of 9,.

- Furthermore, we assume that the response of the composite to any

purely mechanical loading by uniform do or by d& is also piecewise 1inear

- and described by (1). Suppose that fnstantaneous overall properties M

B ST e et e ld alm e e et Mty . R PO D R SRS EF SRR R S U B X SN
'-"n’-\-".-'_-'.-’~‘-‘-'-.I’.\"O R .u_‘n‘.~ F IR .-.“»..- - ¢‘... N Yol (‘-.’ (‘\I--' A e o SRR ',$ LS "
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and L in (1), as well as instantaneous phase concentration factors Ar, By

in (27) can be evaluated for any given mechanical loading step. The in-

stantaneous thermal properties m, ¢, and concentration factors ar and b,

are to be determined.

Therefore, we again pose the problem stated in Section 2: A repre-
sentative volume V of the composite has been subjected to a certain
loading or deformation history such that the current overall stresses and ;;;ﬁ}
strains in V are uniform and have magnitudes ?D and go. Also, the cur-
rent temperature in V is constant and equal to 845. At this particular
point of the loading sequence we apply simultaneous increments of d? and
ds, or d? and d6 in V, and wish to evaluate instantaneous values of M, L,

m, 2, and of the concentration factors Ap, B, a,., b, during the loading

~
~

step.

This problem is solved by the decomposition procedure of Section 2.
Initially, the composite is subjected to the prescribed thermal change
ds and to simultaneously applied surface tractions dSt and dSp given by
(14) to (16). These thermal and mechanical loads create local strain

A

increments dey in (18) and stress increments doy in (23). In general,

these strain increments may be inelastic. However, since the matrix is

plastically incompressible, it is possible to assure that these incre-

ments correspond to purely elastic deformation in both phases under de, E%;i;
dSp and dSt. This is obviously the case when one chooses o = 1 in (11), :
so that the stress and strain increments in the matrix are isotropic. kg;?:
The tractions dSp and dSt must now be removed. This may lead to é&i&;
plastic straining in the matrix, which corresponds to or is caused by '
ds. Also, if an overall stress increment do is applied simultaneously RN
N A 0

i)

i

--------
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i with d8, then dSp, dSt, and d? must be added and applied together.
- The final results for a plastically deforming composite can now be
written on the basis of (24) to (31). Withp =1 in (11) to (23), we
. retain the definitions (24) of vectors h, Sa and y and of their

components but replace that of o with
1=[111000]. (44)

For loading by do and d8, the overall strain increment de is:

de = h dd + M(do - s5 d8). (45)
A comparison with (11) again yields the form (26)
m=h - Ms, (46)

We note that for p = 1 and an isotropic matrix one obtains from

(19) and (43) the following expression for h in (24):

g nen &
: where

h = hy = hy = s7/(3Kn) + Bn,
and st is given by (15).

Therefore, the first term in (45) is an overall isotropic strain
increment, and, according to (18), it is equal to the matrix strain in-
crement. The loading vector d? - Sa de represents total mechanical load
that must be applied to the composite to reflect the effect of simultan-
eous application of d? and dé. M is the instantaneous overall
compliance corresponding to this loading vector.

The stresses caused in the phases by simultaneous application of do




.....
.............

and d@ are:

ddf = ST Y de + Bf(d; - S, de)
(48)

dOm = ST

~

7 —

48 + Bp(do - s5 do)

where B¢, 3, are the instantaneous stress concentration factors for the
, overall mechanical load increment do - s, d8. If these increments are
described by (27), then the instantaneous thermal stress concentration

factors become:

: b = sty - Bf 35,
(49)

bm = sT 1 - B8y Sa

Equations (45) to (49) convert in an exact way the thermomechanical

problem into a mechanical loading problem along the incremental path

L S

d; - Sa de.

Next, consider loading by de and d8. The composite is first sub-

jected to loading by d8, dSp, and dSt, which causes isotropic strains
h & in both the composite and matrix. Since the overall strain incre-
ment is now prescribed, the h do and any additional overall strains must

be equal to de. Hence, the overall stress increment is:

do = 55 d8 + L(de - h d8) (50)
; T T

E A comparison with (12) again yields (29):

- £t =-s3+Lh. (51)
‘

Y
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While fa is not isotropic, together with dé it causes an isotropic stress
increment st 1 d0 in the matrix. This is found from (23) at o = 1. Ac-
cordingly, plastic loading of the composite is caused only by the second
term in (50). The overall mechanical strain is equal to d? - ? . L
is the instantaneous overall stiffness corresponding to this strain
increment.

The strain increments in the phases are:

dEf

h do + Af(de - hdd)

(52)

deqm = h d8 + Ap(de - hde)

where Af, Ap are instantaneous strain concentration factors for overall
strain d - hde. If (30) is used, then the instantaneous thermal strain

concentration factors are:

[+Y]
—
1}

(Af - 1) n
(53)

Inasmuch as the instantaneous M and L may have as many as 21 inde-

pendent coefficients, the vectors m in (46) and ¢ in (51) may have 6 in- :'2;35
dependent coefficients. For example, m assumes the form (41), with aj :ﬁl 1
(1 =1 to 6) representing instantaneous thermal expansion coefficients gﬁ;g!
of the composite. i3§3£

As in the previous case, (50) to (52) convert in an exact way the ;;zif
thermomechanical problem into a mechanical deformation problem along the Ej;::

path de - hdd, It is seen that in both cases the thermal and mechanical

effects are coupled, even though phase mechanical properties do not
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depend directly on temperature.

(i1) Two-phase composites

Finally, we consider the two-phase composite with isotropic phases
of arbitrary geometry, Section 3. The reinforcement phase (f) is as-
sumed to remain elastic, while the matrix phase (m) may become elastic-
plastic when a given yield condition has been satisfied. In the plastic
region, the matrix constitutive relation is described by (2), with My
and Ly replaced by instantaneous compliance and stiffness. Again, Mp
and Ly are assumed to be piecewise linear, symmetric, and satisfy the
requirement of plastic incompressibiiity of the matrix. Also, we assume
that overall instantaneous properties M and L of the composite, as well
as the instantaneous concentration factors A., B, can be evaluated for

‘ any purely mechanical overall stress or strain increment in the elastic
and plastic range.

To find instantaneous thermal properties P’ %2, and the concentra-

| tion factors ar, Pr, we again consider a representative volume V of the

' composite which has been loaded to current uniform overall stress 30,
strain go’ and temperature 6o5. The volume V is now subjected to addi-
tional increments of d§'and ds, or Q? and de. As in Section 3, we apply
overall increments of temperature do and of isotropic stress dS, with dS
given by (35). Resulting phase stresses and strains follow from (33),

i they are isotropic and by assumption cannot cause plastic deformation in
the matrix. The surface tractions or strains must now be adjusted to

satisfy the prescribed do or de at the boundary S of V.

; For the case of do and ds applied simultaneously one obtains the

overall composite strain increment

R W

PR S P I
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6T =< qdo + Mds - s do) (54)

where q and s are given by (35) and (36), and M is the overall instan-
taneous compliiance for the mechanical stress increment d& - s do.

A comparison with (11) again yields the form (37)

m=q - Ms (55)

~

The stresses caused in the phases are:

dof =5 d® + Bf(do - s d8)

(56)

dop = S d9 + Bp(ds - s de)

where Bf, 8y are instantaneous stress concentration factors for the
overall mechanical load increment dg - s d3. From (27) and (56), the

instantaneous thermal stress concentration factors are:

| 5 = (I - 8f)s , bn = (I - 8n)s (57)

~

For the case of d9 and de applied together, one obtains the overall

stress increment
do = s do + L(de - q de) (58)

and

£ = -5 +1Llq (59)

where L is the instantaneous composite stiffness for the overall strain

increment de - q d8, and q is given by (36). The phase strain increments

B KR

in this case are

...........................
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q d8 + Af(d;:_- q d8)

(60)

Q.
m
H

q d9 + Ap(de - q d8)

~

B PR AT R
4

and the instantaneous concentration factors:

s+ (Ae-13 . an=(An- D (61)

i ~ ~

where Ag, Ay are instantaneous strain concentration factors for an over-

all mechanical strain increment equal to de - q d8.

Equations (54), or (58), again convert in an exact way the thermo-

mechanical loading problem into a mechanical one along a loading path
d? -sde, ora strain path de - q de, respectively. As in the case of
i. a fibrous composite, the thermal and mechanical loading effects are
;?- coupled in the instantaneous M, L, and Ap, B,

',:!:I:
.
.
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5. DISCRETIZATION OF THE PHASES

Results of the previous sections depend on the availability of
overall instantaneous mechanical stiffnesses, compliances, and phase
concentration factors in each loading step. These quantities need to be
evaluated for a certain model geometry of the composite material. An
important consideration in the choice of a material model is the fact
that the thermal loading paths d? - 53 48 in (45) and d? - s de in (54),
as well as the thermal strain paths i{ - p @ in (50) and dg -9 de in
(58), may have a significant isotropic component. That is easily seen
from the definitions (24), (36) and (47) of Sas S» p and 9. It follows
that the material model chosen for analysis of the mechanical response
must give reasonably accurate predictions when the composite is loaded
by isotropic overall stresses or strains., This restriction may exclude
certain models which are primarily useful in predicting the behavior of
a fibrous lamina under in-plane loads, such as the VFD model (DVORAK and
BAHEI-EL-DIN 1982).

Another important consideration in the choice of a material model
is the fact that when the matrix phase becomes plastic, the local pro-
perties (2) are stress-dependent, and therefore, L, and M, are no longer
spatially uniform. Even if (2) are regarded as relations for averages
in the phases, the phase properties need to be determined for the actual
local fields or their approximations. This excludes application of
certain averaging techniques, such as the self-consistent method, which
assume that phase fields are uniform,

These considerations suggest that the chosen composite model should

be based on a specific representative geometry of the microstructure,
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which allows for discretization of each phase into a number of sub-
elements with locally uniform fields. An example of such an approach
was outlined by DVORAK and TEPLY (1985). In general, if the represen-
tative volume of the composite and the phase geometry in this volume are
specified, then each phase can be subdivided into a certain number of
finite elements, and the overall properties L, M, local properties in
the plastically deforming subelements, as well as the concentration
factors for each subelement can be calculated for any load or strain
increment.

Suppose that the subelement stresses, strains, as well as the
stiffnesses and compliances of plastically deformed subelements have
been found for a certain increment ds or dc applied to the representa-
tive volume at d9 = 0. Let subscripts i, and j, denote subelements in
the matrix, and fiber, respectively. If the partial contributions of
ea.h row of d? or dg are identified, one can write the uniform subele-

ment fields in the form

dojp = Bip do do jf = Bj¢ do
(62)

dzim = Ajp do de jf¢ = Ajf de

where the A, B are instantaneous subelement concentration factors.

One can also write the following relations between the overall
averages and the uniform local fields in the subelements of the repesen-
tative volume:

d?’ L Cjdojp* L Cj dojf
‘ ) (63)

de =L Cfdejp* L cj dejf
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where Cj, cj are subelement volume fractions such that .
L ci=cp , £ cj=cf , cf+cp=1 (64) ;Z;E:'.:'::
R
Using (62) and (63) one can obtain the average phase concentration ;_,ﬂ
factors i
sz ¢y A By = o= T ¢4 By i
Am‘E;zﬁ im m=gy " ¢ Pim R
(65) 2;;¢
A=chA- Berref Si
-
From the local instantaneous Lijm, Mim in the plastically deforming O
subelements, known Ly, Mg, Lf, Mg in the elastic subelements, and (62) -
to (65), one can find the overall instantaneous properties as: yaat
b
L =% ¢j Lig Aig + £ €5 Lf Ajf i
P (66) S
M =12 ¢ MjpBim *+ I ¢j MrBjf C-:‘
.'\:th':
LS
The local thermal strain vectors my and m¢ remain constant in each sub- e
- - o
element, at least for a given d8, and equal to those of the elastic o
phase. These thermal stress vectors are: A ?
f N

Lim = Lim Mm , ¢ = Lf me (67)

[N
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The decomposition procedure can now be applied to the discretized

vl
a

. .t
F R A l_""

representative volume. The results follow from those presented in

-If (' f'
[y

Section 4,

,
2

i
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In the fibrous composite one obtains: For do # Q, @8 # Q, the

overall strain increment de, and overall m, follow from (45) and (46),

Aty el

with M taken from (66). The local subelement stresses and thermal

‘‘‘‘‘‘‘‘‘‘‘‘‘‘

.
3
. e Lt AT . ca v, . . ._-‘ e T TS e e e e e A



stress concentration factors are, in analogy with (48) and (49):

dojf = sTy do + Byf(do - 54 B)
d95m = sT 1 d9 + Bip(do - s5 do)

(68)

Bjf = sT Y - Bjf sa

Sim = sTY - Bim Sa

For d¢ # 0 do #0, the overall stress increment do and overall L,

follow from (50), (51) and (66), and the local fields and thermal strain

concentration factors are as in (52), (53):

d‘f'jf =hde + Ajf(dg - h de)

(69)

3jf = (Rjf - ) 0

dim = (Mm - 1) 0

These results can be utilized to find average instantaneous thermal

strain concentration factors in the phases as:

1 1
a2 TF LSy oA of = ¢ T ¢j bjf
(70)

1 1
m = o ¢ dim E;’z C{ bim

1
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6.  RELATED APPLICATIONS —
'{; In addition to mechanical and thermal loading, the composite may j;~%
EI also undergo a phase transformation such that one or both phases, if J;QE
] free, experience a volume change over an increment of temperature do: -
2 T I
: dVpe/V = degy = 3 wp do (r = f,m) (71) T
Furthermore, composites with polymer matrices may absorb moisture. This -
causes swelling of the unconstrained matrix material. If the moisture E?f
- concentration is uniform, then :bui
J H b

where yn is the linear swelling coefficient and ¢ is moisture concen-
tration. If the matrix rematns elastic in dilatation, and inviscid, (.
N then the above theory may be applied with the following adjustments. e
A
- Suppose that do and dc are applied simultaneously and that a free if;:
phase r undergoes total volume change [:f

r 8 T H

deik = (degk + degk + degic) (73)
’ If this superposition holds in a piecewise linear manner, then one t%a
can write in phase r for each loading step ' 3
r r r =
~ degy = ap + Epuwp + g vp) B (74) [;
e %
“ e
X where, in a particular loading step n: E{S
> o
b 2
, " s T r 8 _H E
; tn = (deyx/dekk) » 2n = (dekk/dekk) ot
:3 ;;;
" are known distribution coefficients. Hence, %5;
2 e
o3 0..'f‘
ZfF‘«“:‘«“;):?:}»FJ?="a‘5:¢}: I G e e L o s o ARG HLT ALY QAT
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] r r r
o gk = 3 (1 +5p4 +gp) ap do. (75)

',f This suggests that for each loading step n one can evaluate a
\ certain multiplier of 3de that can be substituted for the instantaneous
\

- 1inear thermal expansion coefficient of phase r in (2). Indeed, even in
the case of thermal loading alone it may be appropriate to change a

with temperature, and that is obviously possible in the present theory.
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7. DISCUSSION

Although the results are valid only for the two binary systems,
they apply to most composite materials of practical interest. For the
composite systems in question, the elastic values of T and % found from

: (26) and (29) are identical with those that can be calculated from LEVIN
E (1967) formulae, or equation (2.20) in ROSEN and HASHIN (1970) and

?l equation (33) in LAWS (1973). However, the methods used in deriving

.. these respective equations, and their internal structure, are entirely
different. The decomposition used herein makes it possible to find
overall thermomechanical response of the composite fn the plastic range

}
: in terms of instantaneous overall mechanical properties and thermo-

elastic constants of the phases. Also, average instantaneous phase
stresses and strains are found in terms of mechanical concentration
factors. All these relations are exact. They make it possible to con-
vert any available facility for analysis of isothermal elastic-plastic
behavior of the two composite systems to one which can analyze the
effect of both mechanical loads and uniform changes in temperature, as
well as other transformation strains in the phases.

It has not escaped our attention that equations similar to (7) to
(10) can be written for three phase fibrous composites. The resulting
system has at most one solution, and if 1t exists it leads to evaluation
of overall thermal vectors and 1ocal thermal concentration factors for

the elastic three phase materials which are analogous to those derived

in Section 2. However, no additional constraints are allowed in this
case hence (11) cannot be introduced, and, therefore, it is not possible

to analyse elastic-plastic deformation of the three phase aggregate by the R




method of Section 4(i).
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